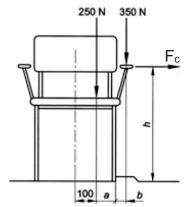

A.1.3.4	Das Hebelgesetz	
	hum	
	agebalken ist im Gleichgewicht (Abk. G enden Drehmomente gleich Null ist:	G), wenn die Summe aller
Hieraus	s ergibt sich das Hebelgesetz:	
A.1.3.5	Der Nachweis gegen Umkippen	
 Im kritise 	schen Zustand gilt:	
Kipp	omoment = Stabilisierendes Moment	
	Momente sind dabei jeweils Betragswe ogen.	rte und auf den Kipppunkt
Nachwe	eis mit Sicherheitsbeiwert γ	


Der Sicherheitsbeiwert für die Lagesicherheit (Kippen) liegt je nach Anwendungsfall zwischen 1,5 und 2,0.

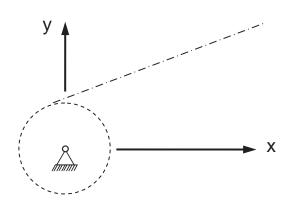
Beispiel A.1.3: Kippen (Prüfung Wintersemester 10/11)

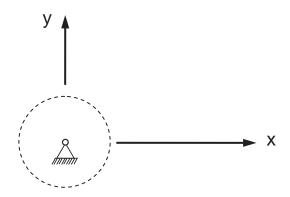
In der Möbelprüfung wird das seitliche Umkippen von Stühlen mit Armlehnen durch zwei Tests geprüft (DIN EN 1022):

Test 1: Gemessen wird F₀

Test 2: Gemessen wird Fc

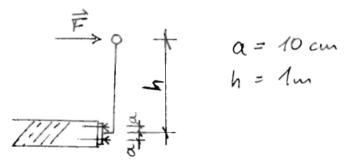
F₀ und F_c sind jeweils die Horizontalkräfte an der Armlehne, bei denen der Stuhl umkippt.

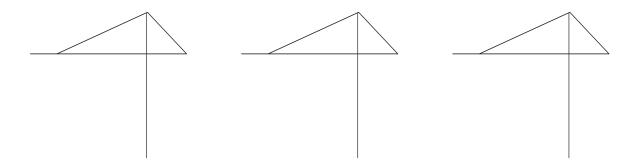

- a) Wie ist der Zusammenhang zwischen Fo und dem Eigengewicht des Stuhls?
- b) Welches Eigengewicht muss ein Stuhl mit den Parametern a = 100 mm, b = 70 mm und h = 600 mm mindestens aufweisen, damit die Forderung der Norm F_c ≥ 20 N in Test 2 erfüllt werden kann?
- c) Zeigen Sie, dass ganz allgemein folgender Zusammenhang zwischen den beiden Testergebnissen gilt, der in der Norm angegeben ist:


$$F_c = F_0 + (250a - 350b)/h$$

A.1.3.6 Parallelverschiebung der Wirkungslinie

Die Wirkungslinie einer Kraft darf ______ verschoben werden, wenn zur Korrektur das entsprechende _____ eingeführt wird.


In Lehrbüchern wird dies oft als "Reduktion des ebenen Kraftsystems" bezeichnet.

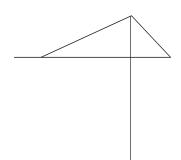

Beispiel A.1.4: Reduktion von Kräften

Wie groß ist die Kraft in der Verankerung des Geländerpfostens (Pfostenabstand 0,8 m)?

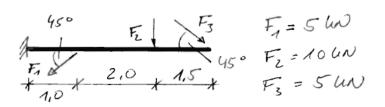
A.1.3.7 Bildung von Resultierenden

- Durch die Reduktion (Kap. A.1.3.6) k\u00f6nnen mehrere Kr\u00e4fte F₁, F₂, ... mit unterschiedlichen Wirkungslinien zu einer resultierenden Kraft R zusammengefasst werden
- Beispiel Kran

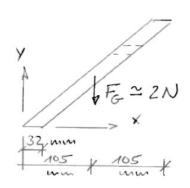
• Der Momentensatz:

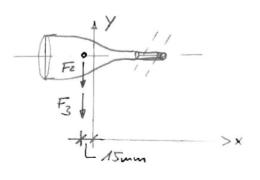

Die Drehmomente der Einzelkräfte F_i ergeben als Summe das Drehmoment M_R , das gleich dem Drehmoment der Kraftresultierenden R um denselben Drehpunkt ist.

 Aus dem Momentensatz kann die Lage der Wirkungslinie von R berechnet werden:



Beispiel Kran




Beispiel A.1.5: Resultierende von Kräften

- a) Resultierende Kraft R nach Betrag und Richtung. Lösung zeichnerisch und rechnerisch
- b) Lage der Wirkungslinie von R
- c) Drehmoment bezogen auf die Einspannstelle

Beispiel A.1.6: Kippen eines Weinständers

Ges: Kippnachweis für die Fälle

- a) Weinständer mit leerer Flasche ($F_2 = 6 N = Gewicht der leeren Flasche$)
- b) Weinständer mit voller Flasche (F₃ = Gewicht Inhalt 700 ml)