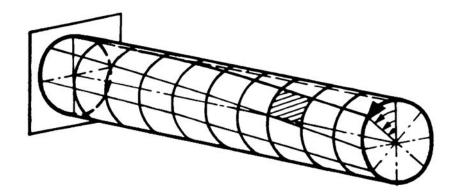
F.3 Spannungen infolge Torsion

Bei der Spannungsberechnung infolge Torsion muss grundsätzlich zwischen folgenden Querschnittsformen unterschieden werden:

Die Berechnung der maximalen Torsionsschubspannung erfolgt in allen Fällen mit der Formel max τ_T = M_T / W_T, mit dem Widerstandsmoment für Torsion W_T.

F.3.1 Kreis- und Kreisringquerschnitt

Verformung eines Stabes mit Kreisquerschnitt infolge eines Torsionsmomentes:



Ein auf der Oberfläche markiertes Rechteck verformt sich zu einem Parallelogramm. Diese Winkelverzerrung wird durch Schubspannungen hervorgerufen. Die Winkeländerung ist die Schub-Gleitung γ . Diese hängt mit den Schubspannungen und dem Schubmodul zusammen:



 $\tau = G \cdot \gamma$

Analog zum Flächenträgheitsmoment für Biegung I_y definiert man als Querschnittskenngröße der Torsion das Torsionsträgheitsmoment I_{T_i}

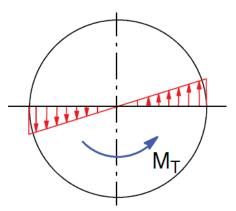
$$I_T = \int_A r^2 \, dA$$

Für den Kreisquerschnitt ergibt dieses Integral: $I_T = \frac{\pi \cdot R^4}{2}$

Die Schubspannung τ_T im Querschnitt erhält man (ohne Angabe der Herleitung) durch:

$$\tau_T = \frac{M_T}{I_T} r$$

Die Torsionsspannung wächst also linear mit dem Abstand vom (Schub-)Mittelpunkt r an:



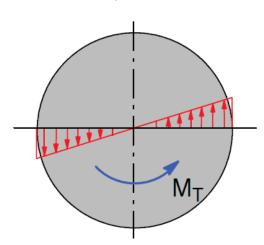
Die Spannung max τ_T tritt in der Randzone auf, so dass man mit max r = R ein Torsionswiderstandmoment W_T definieren kann:

$$\max \tau_T = \frac{M_T}{I_T} R = \frac{M_T}{W_T}$$

Damit lassen sich nun die Torsionsschubspannungen direkt aus dem Torsionsmoment berechnen. In der Mitte des Querschnittes treten nur geringe Torsionsschubspannungen auf. Die Materialausnutzung ist dort also gering. Bei Torsion ist deshalb ein Hohlquerschnitt effektiver als ein Vollquerschnitt.

Das Torsionsträgheitsmoment für den Kreisringquerschnitt ergibt sich als Differenz zweier Kreisflächen mit den Radien R_a und R_i :

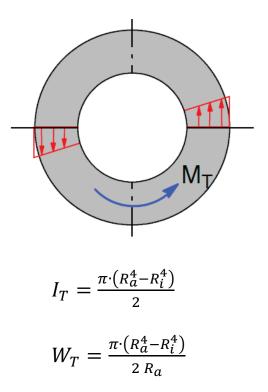
Kreisquerschnitt



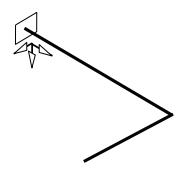
$$I_T = \frac{\pi \cdot R^4}{2}$$

$$W_T = \frac{\pi \cdot R^3}{2}$$

Kreisringquerschnitt



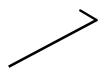
Beispiel: Runder Stahlstab unter Torsion



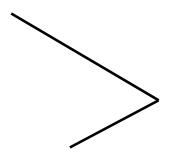
Rundstab massiv, Durchmesser 50 mm

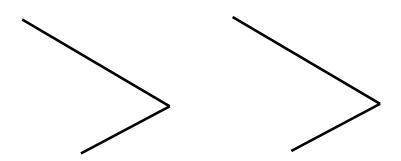
ALR:

Schnitte:



Schnittkraftverläufe:





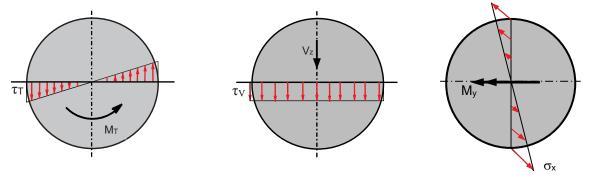
Autor: Prof. Dr. Benno Eierle © 2021

Berechnung der Spannungen

- Berechnung der Schubspannung aus der Querkraft:
- Berechnung der Schubspannung aus dem Torsionsmoment:

• Berechnung der Biegespannung aus dem Biegemoment:

Treten am gleichen Punkt mehrere Spannungsarten auf, so sind diese zu überlagern:



Anwendung auf das Beispiel:

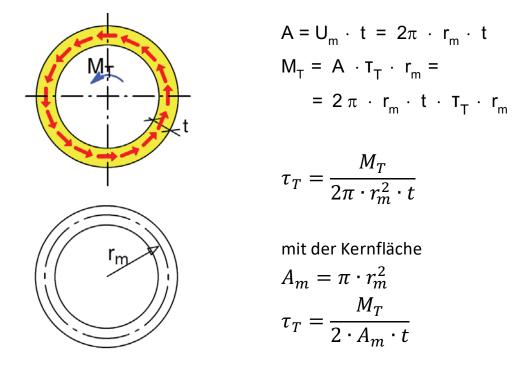
F.3.2 Massive Querschnitte

Für viele massive Querschnitte, die nicht kreisförmig sind, gibt es oft keine mathematisch geschlossene Lösung für die Kenngrößen I_T und W_T . Standardfälle (Rechteck, ...) sind nachfolgend tabelliert:

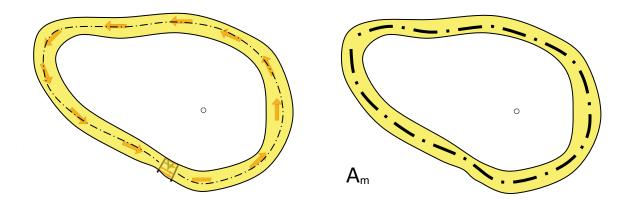
Querschnittsform			Ιτ					Wτ	C	Ort von max $ au$			
Ellipse a > b !		$\frac{\pi}{16} \cdot \frac{a^3 b^3}{a^2 + b^2}$					$\pi \frac{ab^2}{16}$			Beide Berührungs- punkte von einge- schriebenem Kreis und Ellipse			
Sechseck	T T	0,115 d⁴					(0,188 d	3	In der Mitte der Kanten			
Achteck		0,108 d ⁴					0.185 d°			In der Mitte der Kanten			
Rechteck	$\alpha b^{3}d$					$\beta b^2 d$			In der Mitte der längeren Kante				
	ס	d/b	1,00	1,25	1,50	2,	00	3,00	4,00	6,00	10,00	∞	
d > b !		α	α 0,140 0,17		0,196	0,2	229	0,263	0,281	0,299	0,313	0 333	
		β	0,208	0,221	0,231	0,2	246	0,267	0,281	0,239	0,010	0,000	

F.3.3 Dünnwandige geschlossene Querschnitte

Ein Rohr, dessen Wandstärke klein gegenüber dem Radius, ist, kann als Sonderfall des allgemeinen Kreisringes nach Kap. F.3.1 aufgefasst werden. In diesem Fall ist die Annahme einer gleichmäßigen Verteilung der Schubspannungen über die Wanddicke als Vereinfachung zulässig.



Die Bedeutung dieser Formeln liegt u.a. darin, dass sie auf beliebige Hohlquerschnitte mit dünner Wandung als gute Näherung übertragen werden können.



Daraus erhält man die sogenannte "Bredt'sche Formel":

$$\max \tau_T = \frac{M_T}{2 \cdot A_m \cdot \min t}$$

In dieser Gleichung darf A_m nicht mit der Querschnittsfläche verwechselt werden. A_m ist die Fläche, die von der Mittellinie der Profilform umschlossen wird. Die Formel zeigt, dass τ_T umso kleiner wird, je größer die umschlossene Fläche des Hohlquerschnitts ist.

Das Produkt aus Schubspannung τ_T und Wanddicke t ist für jede Stelle der Wandung eines auf Torsion beansprichter: Prof. Dr. Benno Eierle © 2021 itt konstant. Man bezeichnet das Produkt $\tau_T \cdot t$ als Schubfluss

$$T = \tau_T \cdot t = konst.$$

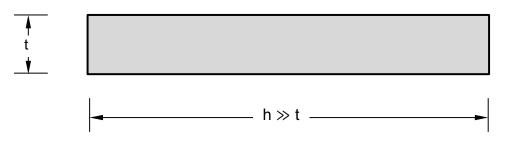
Innerhalb des Querschnitts tritt die größte Schubspannung max τ_T also dort auf, wo die Wanddicke t am kleinsten ist.

Zur einfachen Berechnung der maximalen TcAutor: Prof. Dr. Benno Eierle © 2021 man wieder ein Torsionswiderstandsmoment:

$$W_T = 2 \cdot A_m \cdot \min t$$
 $\max \tau_T = \frac{M_T}{W_T}$

F.3.4 Dünnwandige, offene Querschnitte

Der einfachste "offene, dünnwandige Querschnitt" ist ein schmales Rechteck (Blech). Die Schubspannungen verlaufen im Wesentlichen parallel zur längeren Kante:



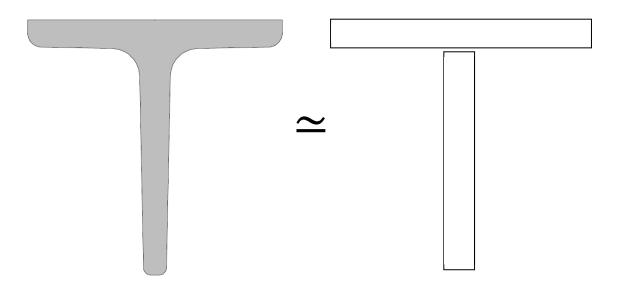
Die Querschnittskenngrößen ergeben sich nach Tabelle F.3.2 mit einem annähernd unendlich großen Seitenverhältnis d / b = h / t $\rightarrow \infty$: $\alpha = \beta = 0,333 = 1/3$

$$I_T = \frac{1}{3}h \cdot t^3$$
 $W_T = \frac{I_T}{t} = \frac{1}{3}h \cdot t^2$

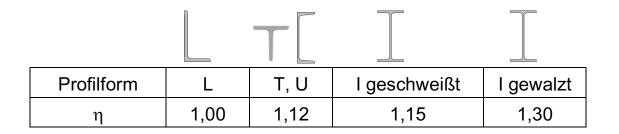
Beliebige dünnwandige, offene Profile denkt man sich nun näherungsweise aus einzelnen, rechteckigen Blechen zusammengesetzt. Jedes Rechteck trägt einen Teil des gesamten Torsionsmomentes. Für alle aus schmalen Rechtecken zusammengesetzten Profile (L, I, U etc.) ergibt sich das Gesamttorsionsträgheitsmoment dann als Summe der einzelnen Rechtecke:

$$I_T = \frac{1}{3} \sum h \cdot t^3 \qquad \qquad W_T = \frac{I_T}{\max t} = \frac{1}{3} \sum h \cdot t^2$$

Den Schubfluss kann man sich folgendermaßen vorstellen:



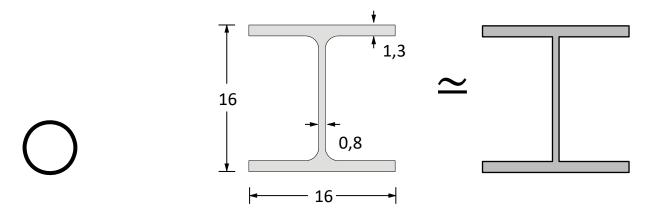
Bei Walzprofilen aus schmalen Rechtecken (I, \sqsubset , L, T) wird die Abweichung in der Form durch Ausrundung der Ecken usw. in einem überschlägigen Korrekturfaktor η berücksichtigt, mit dem der jeweilige Wert für W_T bzw. I_T zu multiplizieren ist.



$$I_T = \eta \frac{1}{3} \sum h \cdot t^3 \qquad \qquad W_T = \frac{I_T}{\max t} = \eta \frac{1}{3} \sum h \cdot t^2$$

Beispiel:

Walzprofil HE 160 B, M_T = 1,0 kNm



$$I_T = \frac{1}{3}\sum h \cdot t^3 =$$

$$I_T = \eta \frac{1}{3} \sum h \cdot t^3 =$$

Genauer Wert aus Tabellen $I_T = 31, 2 \text{ cm}^4$

$$W_T = \frac{l_T}{\max t} =$$
$$\tau_T = \frac{M_T}{W_T} =$$