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Abstract. This study presents a theoretical framework for the computational modelling of vis-
coelastic materials with a time-dependent, but stress- and strain-independent variation of
stiffness, like e.g. solidifying concrete. It offers the possibility to see solidification and deterio-
ration from a common viewpoint instead of applying two separate theories.  
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1 Definition of Aging

This paper deals with nonlinear elastic constitutive relations for aging materials. These 
models are expanded by linear viscoelastic models for time dependent behaviour, esp
with concrete in mind. Young hardening concrete is one example for the attribute aging as it is
used in this paper. Aging is understood here as a time dependent variation of the is
homogenous stiffness, which is not caused by stresses. Accordingly the solidification o
crete is an example for increasing stiffness; the damage caused by melting, temperature
in general or time-deteriorating effects are examples for decreasing stiffness. Any effect
stress dependent as plasticity or cracking must not be included in this definition becau
not isotropic. It should be mentioned, that anisotropic aging effects might be included in
presented theory by higher order solidification or damage tensors. But in this pape
assumed, that the change of the time dependent stiffness may be described by scalars a
to the following formula:

(1)

In this definition E is the Young’s modulus, that would be reached theoretically at infinite t
without any deteriorating effects (β = 1 and δ = 0). β(t) is the degree of solidification, which
should not be confused with the degree of hydration α(t). A relation between α and β was e.g.
found by Laube [9]:

(2)

where αo is the degree of hydration, when mechanical properties start to develop. δ(t) is the
degree of deterioration, that is called D in the classical damage theory of Kachanov [8]
degrees β and δ are varying between 0 and 1 and are increasing monotonously with time:

and ; and (3)

Especially the monotonous increase is an important property. It indicates, that regainin
ness after an early deterioration is not decreasing the degree of deterioration but increa
degree of solidification. This is fundamental, because solidification is not the reverse p
of deterioration as will be shown later on.

It is assumed that all conditions are satisfied for an additive decomposition of the strain r
parts caused by (in)elasticity (e), viscousity (ϕ), temperature (ϑ), shrinkage (s) and cracking
(c):

(4)
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2 Nonlinear Elasticity of Aging Materials

The difference between an increasing and a decreasing stiffness is shown by a simple e
that everyone knows, who has butter for breakfast: From observation we know, that the h
of butter leads to a loss of stiffness and to an increasing deformation i.e. strains (if we im
some kind of loading on the butter and neglect plasticity effects). If the deformed butter 
back in the refrigerator and the temperature is cooling down, the mechanical deterio
process is not reversed. On the contrary no deformation at all is observed during solidifi
The butter hardens in its deformed state and doesn’t regain it’s original shape. In this c
concrete behaves like butter.

This may also be explained by a graphical model that was introduced by with his
dification theory for concrete [2]. One can imagine a solidification process as the incre
the solidified share of a body. An increase of the degree of solidification means that new 
free connections are built (Fig. 1). The opposite process of deterioration may be likewise
ined as the damage of the already existing solidified part, that already bears stresse
equivalent model we may think of deterioration as cutting stressed springs (what le
deformation) and of solidification as introducing new stress-free springs (what does not
any deformation).

For doing some analysis on aging materials, we have to formulate constitutive equ
which reflect this difference. Because both phenomena have a transient nature, a rate t
mulation is chosen. For pure solidification and pure deterioration the constitutive equatio
well known:

Solidification : (equivalent to the solidification theory) (5

Bazant

ˆ
Figure 1: Solidification Theory [2].
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Deterioration : (equivalent to Kachanov’s damage theory)

As is easily seen, the formula for solidification leads to changes of the strains only th
changes of the stress state. That means solidification alone doesn’t affect strains or s
From the formula for deterioration follows, that a change of E may cause a change 
strains too. These nonlinear-elastic strains are often called inelastic because they are no
ible. In this paper, they are included in the (nonlinear-) elastic strain .

The generalization of the presented one dimensional equation is done by replacing E w
elastic stiffness tensor. We use a matrix formulation and introduce D as the inverse matrix of
the material stiffness E:

(7)

The equations given above in multidimensional form then are:

Solidification : (8)

Deterioration : (9)

As far as the authors are aware, there is no theory for the combination of both effects
place simultanously. While butter can’t be heated and cooled simultaneously and such a
isn’t needed for that problem, there are materials that show solidification or deterioratio
other reasons. E.g. concrete hardening is caused by a chemical exothermal reaction
sometimes taking place under very high temperatures, so that indeed a combined solidi
and deterioration process exists. A combined theory offers also the advantage of pro
only one constitutive relation and therefore one algorithm for both problems.

Under this aspects, we developed a single generalized theory for aging materials. The
behaviour of cutting springs and building new stress-free springs is described by applyin
the derivative with respect to the degree of deterioration:

(10)

Without solidification effects this equation is equivalent to Kachanov’s damage theory
while it also incooperates the pure solidification theory [2]. A summary of aging elasticity
single stress change in time is given in table 1.
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Table 1: Aging elasticity for a one-time stress change σ(to). 

In a simple example the unidimensional cases of pure deterioration, pure solidification a
combination are compared in fig. 2.

3 Linear Viscoelasticity

3.1 Goals of a numerical model

The viscoelastic theory that is presented below was derived for concrete, although it m
applicable to other materials too. The viscous behaviour of concrete can be described t
linear viscoelasticity, if stress levels are below 40 % of the compressive strength. Therefo
ear viscoelasticity is appropriate for almost all concrete structures because the stress c
is satisfied under permanent or frequent loads. The goal of the viscoelastic material la
give a numerical representation of the measured viscoelastic behaviour. For concrete 
coelastic properties are given in form of creep functions ϕ. A numerical model should be for
mulated with respect to ϕ because no other material parameters are usually available for
crete. For the sake of simplicity we presume affinity of the creep strains, i.e. the creep 
are supposed to occur with the same Poisson’s ratio ν as the elastic strains (some authors su
gest volumetrically constant creep for concrete [7]). 

Solidification Deterioration Solidification with 
Deterioration
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3.2 Creep functions

The starting point of a viscoelastic analysis is a good creep function. What good means
context depends as always on the point of view. For some materials like polymers, a de
of ϕ depending on the load duration time (t-to) is good, because these materials don’t show
aging creep behaviour (nevertheless they may be aging). When Dischinger first formul
rate type constitutive equation for concrete creep in 1937, he presumed the so called W
ideal creep curves, that lead him to the rate of creep method. Nowadays most authors ag
this model isn’t good enough for concrete. Only creep functions that depend on two varia
the actual time t and the time to where the creep inducing stress change occurred – are
posed to be accurate. Because one may argue about this point, we will present a nu
model, that is based on the most general formulation of ϕ(t,to) with two independent variables
t and to. The creep function itself is defined as the ratio between the viscous strain and th
responding elastic strain without deterioration effects:

Figure 2: Example for aging elasticity (combined solidification and deterioration).
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There also exist other definitions. Especially in most modern concrete codes a defini
used, that relates the creep strain to a virtual elastic strain, that the creep inducing stres
cause at the concrete age of 28 days:

(12)

It should be mentioned here, that this definition leads to other constitutive equations th
ones presented later on. Fortunately there is a conversion rule:

(13)

The difference has to be considered too, when using an effective Young’s modulus for
representation:

Without solidification: (MC90, EC2) (14)

With solidification: (15)

Model Code 90 and EC2 don’t consider this difference in the effective stiffness (eq. 14
equation given there is only applicable to old, i.e. hardened concrete at loading time.

Analytical creep functions were proposed by many authors, most of them for mature co
[5]. If young solidifying concrete is analysed, a creep function should be used, that is
suited for young concrete as the one that Laube [9] proposed.

4 Viscoelasticity for aging materials

4.1 Rate type formulation

A rate type formulation of the constitutive equations will be used and an additive separa
the viscous and elastic part is assumed:

ϕ t to,( )
εϕ t to,( )

εe
to( )

------------------=

ϕE28 t to,( )
εϕ t to,( )

εE28
e

-------------------
εϕ t to,( )

σ to( ) E28d⁄
----------------------------= =

ϕE28 t to,( )
E28
E to( )
------------ϕ t to,( )=

Eeff

E to( )

1 ϕE28 t1 to,( )+
--------------------------------------=

Eeff

E to( )

1 ϕ t1 to,( )+
-----------------------------

E to( )

1
E to( )

E28
------------ϕE28 t1 to,( )+

---------------------------------------------------= =
7



B. Eierle and K. Schikora

, one

 second
 of the

 part is
nstant,

at can
(16)

To find a mathematical model that is consistent with the definition of the creep function
has to consider the full time derivative:

(17)

For nonaging materials the second part  vanishes. For aging materials especially this
part must be investigated more closely. Therefore in the following chapter all three parts
viscous strain rate, that where already identified by Huckfeldt [7] are explained.

4.2 Viscous strains for solidification and deterioration

We now look at the three parts of the viscous strain rate as introduced above. The first
the standard or primary term of creep. It’s the sole part if stiffness and stresses are co
and it’s integration over time results in the creep function itself. So this is the only part, th

E to( ) E te( )∼

Figure 3: Viscoelastic behaviour: a) without, b) with the consideration of aging.
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be verified by standard creep tests. For pure solidification and deterioration the term 
a constant stress σo(to):

(18)

If the stresses vary over time, one has to integrate over all loading times τ:

(19)

The second part  is creep, that is caused by the rate of the stiffness corresponding to 
ond part of the elastic strain rate. For solidification this part must not be considered (cf. e

Solidification: (20)

For deterioration the inelastic strain rates , which are caused by damage at time , a
lowed by new creep strains :

Deterioration: (21)

The strain rate is obtained according to the rules for the derivation of integral equations
Volterra type:

(22)

For continous stress changes eq. (22) must be integrated over all loading times τ:

(23)

The third part  is the instantaneous creep of the stress rate . Together with the first
the elastic strain rate one gets the instantaneous strain rate:

(24)
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As normally the whole instantaneous deformation is considered by the Young’s mo
ϕ(t,to=t) usually is zero. Therefore  as well as the first term in eq. (23) are zero in the d
ential form. But they must be considered when transformation to the incremental form 
constitutive equation is carried out:

(25)

4.3 Viscoelasticity for deterioration and solidification

Now one may combine the different parts to a viscoelastic constitutive law. First the ca
pure deterioration is given by eq. 26:

(26)

The case of pure solidification without deteriorating effects is obtained by omitting the se
parts of the elastic and viscous strain rates. Eq. (27) doesn’t depend on the rate of s
according to the idea, that an increasing stiffness doesn’t affect the strains directly. The
ence of solidification on the creep process is included automatically in the creep function
wich is derived from experiments with hardening concrete specimen (aging creep functio
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The derived formulations for pure solidification and deterioration don’t allow the analys
problems, where both phenomena occur together. Furthermore for algorithmic reason
inconvenient to distinguish between two cases. Thus we derived a unified theory by us
same general representation of the stiffness as in chapter 2:

(28)

For the unified approach we now must presume, that the material shows a common
behaviour for increasing and decreasing stiffness, that is again defined by a creep fu
according to eq. (11). From this definition we get the viscous strain caused by a constan
σo(to):

(29)

Considering the demonstrative model of including and cutting springs (table 1), it is foun
the rate type constitutive law again is obtained by applying the time derivative only to the
riorating part of the stiffness change:

(30)

So we finally get a unified viscoelastic constitutive law in rate type form:
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4.4 Example

Again the simple example from fig. 2 is chosen to show the different parts of the viscous
rate. and are zero according to the starting value of the creep function and the ra
formulation. If large time steps within an incremental algorith are used, these parts may r
noteworthy magnitude. The influence of damage on the creep strain is shown in fig. 4 by
parision with the strain of the pure solidification problem.

5 Computational Realization

5.1 Incremental Form

According to the rate type formulation the incremental change of the inverse material st
D is obtained by the consideration of deteriorating effects only:

(32)

The components of the matrix F, which gives the multidimensional form of the material sti
ness, are defined by
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 , (33)

where ν is the Poisson’s ration, which is assumed to be independent of time, and δij  is the Kro-
necker delta.

Thereof the generalized incremental constitutive law for the elastic strain rates is:

(34)
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Figure 4: Example for aging viscosity (combined solidification and deterioration).
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For the implementation in an FE algorithm the inverse relation is required:

(35)

The increase of the load vector  represents the stresses, that are set free du
increase of deterioration within one time step.

To get the incremental viscous strains, eq. 29 is transformed and an abbreviation
introduced:

(36)

The increment of the viscous strain is then:

(37)

5.2 Integration of the stress history

The presented constitutive relations require the evaluation of integrals over the whole
and stiffness history. This leads to remarkable computing times for larger systems. No
ago, this kind of calculation simply wasn’t possible and a work around was needed for s
kinds of constitutive equations. An elegant way was introduced by [2] that solve
problem by the evaluation of a Dirichlet series. Another solution is the rate of creep method
that demands special creep functions (cf. chapter 3.2). But if the computing power contin
double according to Moores law every 18 month, the real evaluation of the history inte
will soon be possible for large systems with reasonable computational effort.

To circumvent the storage problem, there is a work around for pure solidification proble
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D̃ ti 1+ τ,( ) D̃ ti τ,( )–[ ]σ· τ( ) τd

0

ti

∫ D̃ ti 1+ τ,( )σ· τ( ) τd

ti

ti 1+

∫+=
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 elastic

4).

n 
calculated and added to the values already inherited from former time steps. This is ad
geous, because the storage effort is a maximum at the beginning of the calculation. Dur
calculation the storage space of already evaluated time steps may be set free and use
increasing storage requirements for the results. A drawback of this method is, that the se
of time steps can’t be adapted during the calculation and that a continuation of a finished
lation isn’t possible.

6 Conclusion

There is a significant difference in the behaviour of solidifying i.e. time-hardening mate
like concrete, and melting materials, that can be seen in this context as a representation
age due to non–mechanical parameters (time, temperature). In a first approach both p
ena can be described by a time–dependent variation of their elastic stiffness, assuming
stant Poisson’s ratio (eq. 1). Presently two separate theories are used to model the p
behaviour for increasing and decreasing Ε. In this paper the shared and the different theoret
parts in the context of a unified viscoelastic constitutive model are discussed, where the
and the viscous parts of the strain rates are decomposed.
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