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Abstract. This study presents a theoretical framework for the computational modelling of vis-

coelastic materials with a time-dependent, but stress- and strain-independent variation of
stiffness, like e.g. solidifying concrete. It offers the possibility to see solidification and deterio-
ration from a common viewpoint instead of applying two separate theories.
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1 Definition of Aging

This paper deals with nonlinear elastic constitutive relations for aging materials. These elastic
models are expanded by linear viscoelastic models for time dependent behaviour, especially
with concrete in mind. Young hardening concrete is one example for the athginges it is

used in this paper. Aging is understood here as a time dependent variation of the isotropic
homogenous stiffness, which is not caused by stresses. Accordingly the solidification of con-
crete is an example for increasing stiffness; the damage caused by melting, temperature effects
in general or time-deteriorating effects are examples for decreasing stiffness. Any effect that is
stress dependent as plasticity or cracking must not be included in this definition because it is
not isotropic. It should be mentioned, that anisotropic aging effects might be included into the
presented theory by higher order solidification or damage tensors. But in this paper it is
assumed, that the change of the time dependent stiffness may be described by scalars according
to the following formula:

E() = BO[L1-5(H]E (1)

In this definition Eis the Young’s modulus, that would be reached theoretically at infinite time
without any deteriorating effectf € 1 andd = 0). 3(t) is the degree of solidification, which
should not be confused with the degree of hydratidn A relation between andf3 was e.g.
found by Laube [9]:

_ /3
s = E@®) - PO-a0” @)
0 1—0(0 0

wherea,, is the degree of hydration, when mechanical properties start to dedg)ap.the
degree of deterioration, that is called D in the classical damage theory of Kachanov [8]. Both
degree$ andd are varying between 0 and 1 and are increasing monotonously with time:

BO(0,1] and =0 ; &t)O[0,1) and 6=0 (3)

Especially the monotonous increase is an important property. It indicates, that regaining stiff-
ness after an early deterioration is not decreasing the degree of deterioration but increasing the
degree of solidification. This is fundamental, because solidification is not the reverse process
of deterioration as will be shown later on.

It is assumed that all conditions are satisfied for an additive decomposition of the strain rates in
parts caused by (in)elasticity (e), viscousipy, (temperatured), shrinkage (s) and cracking

(c):

e =eS+re?+ed +eS+eC 4)
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2 Nonlinear Elasticity of Aging Materials

The difference between an increasing and a decreasing stiffness is shown by a simple example,
that everyone knows, who has butter for breakfast: From observation we know, that the heating
of butter leads to a loss of stiffness and to an increasing deformation i.e. strains (if we imagine
some kind of loading on the butter and neglect plasticity effects). If the deformed butter is put
back in the refrigerator and the temperature is cooling down, the mechanical deterioration
process is not reversed. On the contrary no deformation at all is observed during solidification.
The butter hardens in its deformed state and doesn’t regain it's original shape. In this context
concrete behaves like butter.

This may also be explained by a graphical model that was introdudgaiziayt with his soli-
dification theory for concrete [2]. One can imagine a solidification process as the increase of
the solidified share of a body. An increase of the degree of solidification means that new stress-
free connections are built (Fig. 1). The opposite process of deterioration may be likewise imag-
ined as the damage of the already existing solidified part, that already bears stresses. In an
equivalent model we may think of deterioration as cutting stressed springs (what leads to
deformation) and of solidification as introducing new stress-free springs (what does not cause
any deformation).

o
Hardened phase ? Plastic phase
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Figure 1: Solidification Theory [2].

For doing some analysis on aging materials, we have to formulate constitutive equations,
which reflect this difference. Because both phenomena have a transient nature, a rate type for-
mulation is chosen. For pure solidification and pure deterioration the constitutive equations are
well known:

miq-

Solidification(d = 0) : € (equivalent to the solidification theory) (5)
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Deterioratior{3 = 0) €€ = %(0/ E) (equivalent to Kachanov’'s damage theory) (6)

As is easily seen, the formula for solidification leads to changes of the strains only through
changes of the stress state. That means solidification alone doesn’t affect strains or stresses.
From the formula for deterioration follows, that a change of E may cause a change of the
strains too. These nonlinear-elastic strains are often called inelastic because they are not revers-
ible. In this paper, they are included in the (nonlinear-) elastic gfain

The generalization of the presented one dimensional equation is done by replacing E with the
elastic stiffness tensor. We use a matrix formulation and intrddwee the inverse matrix of
the material stiffnesk:

D=E" (7)
The equations given above in multidimensional form then are:

Solidification (§=0): &

Do (8)

e

Deterioration (3 =0) : & %(Do) = Do + Do (9)

As far as the authors are aware, there is no theory for the combination of both effects taking
place simultanously. While butter can’t be heated and cooled simultaneously and such a theory
isn't needed for that problem, there are materials that show solidification or deterioration for
other reasons. E.g. concrete hardening is caused by a chemical exothermal reaction, that is
sometimes taking place under very high temperatures, so that indeed a combined solidification
and deterioration process exists. A combined theory offers also the advantage of providing
only one constitutive relation and therefore one algorithm for both problems.

Under this aspects, we developed a single generalized theory for aging materials. The elastic
behaviour of cutting springs and building new stress-free springs is described by applying only
the derivative with respect to the degree of deterioration:

.e . 0D« . 6
= + = + —
€ Do 35 0o = Do I _6Do (20)
Without solidification effects this equation is equivalent to Kachanov’'s damage theory [8],
while it also incooperates the pure solidification theory [2]. A summary of aging elasticity for a
single stress change in time is given in table 1.
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Solidification with
Deterioration

Mechanical \f_ \/_
Model
o=0 oc=0

Young'’s Modulus E(t) = B(HE E(Y) = [1-0(t)]E E(Y) = BMO[L-8()]E

Solidification Deterioration

Rheological
Model

L L

Instantanous e, \ _
elastic strain e (ty) = D(tyo(ty)

Inela?gtce strain ée(t) . ée(t) - D(t)o(to) ée(t) = %ES)('[)D(J[)G(J[O)

Table 1: Aging elasticity for a one-time stress chang).

In a simple example the unidimensional cases of pure deterioration, pure solidification and the
combination are compared in fig. 2.

3 Linear Viscoelasticity

3.1 Goals of a numerical model

The viscoelastic theory that is presented below was derived for concrete, although it may be
applicable to other materials too. The viscous behaviour of concrete can be described through
linear viscoelasticity, if stress levels are below 40 % of the compressive strength. Therefore lin-
ear viscoelasticity is appropriate for almost all concrete structures because the stress criterion
is satisfied under permanent or frequent loads. The goal of the viscoelastic material law is to
give a numerical representation of the measured viscoelastic behaviour. For concrete the vis-
coelastic properties are given in form of creep functgpn& numerical model should be for-
mulated with respect tp because no other material parameters are usually available for con-
crete. For the sake of simplicity we presume affinity of the creep strains, i.e. the creep strains
are supposed to occur with the same Poisson’sva®the elastic strains (some authors sug-
gest volumetrically constant creep for concrete [7]).
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Figure 2. Example for aging elasticity (combined solidification and deterioration).

3.2 Creep functions

The starting point of a viscoelastic analysis is a good creep function. What good means in this
context depends as always on the point of view. For some materials like polymers, a definition
of ¢ depending on the load duration timejtis good, because these materials don’t show an
aging creep behaviour (nevertheless they may be aging). When Dischinger first formulated a
rate type constitutive equation for concrete creep in 1937, he presumed the so called Withney
ideal creep curves, that lead him to the rate of creep method. Nowadays most authors agree that
this model isn’t good enough for concrete. Only creep functions that depend on two variables —
the actual time t and the timgwhere the creep inducing stress change occurred — are sup-
posed to be accurate. Because one may argue about this point, we will present a numerical
model, that is based on the most general formulatid@r{tdf) with two independent variables

t and t. The creep function itself is defined as the ratio between the viscous strain and the cor-
responding elastic strain without deterioration effects:
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ef(t,t,)

e(t,)

ot 1) = (11)

There also exist other definitions. Especially in most modern concrete codes a definition is
used, that relates the creep strain to a virtual elastic strain, that the creep inducing stress would
cause at the concrete age of 28 days:

eftt) ety

Peoglls ty) = =
E28\" "o 8&28 O-(to)/ E28d

(12)

It should be mentioned here, that this definition leads to other constitutive equations than the
ones presented later on. Fortunately there is a conversion rule:

E
Pezllty = F 300 10 (13)

The difference has to be considered too, when using an effective Young’s modulus for creep
representation:

E(t,)
Without solidification: E ¢ = 2 MC90, EC2 14
T 1+ 0ppg(ty, 1) ( ) -
E(t E(t
With solidification:  Eg¢ = Y o (15)

1+0(ty, ty) 1+ ?4’528(% t.)
28

Model Code 90 and EC2 don't consider this difference in the effective stiffness (eq. 14). The
equation given there is only applicable to old, i.e. hardened concrete at loading time.

Analytical creep functions were proposed by many authors, most of them for mature concrete
[5]. If young solidifying concrete is analysed, a creep function should be used, that is well
suited for young concrete as the one that Laube [9] proposed.

4  Viscoelasticity for aging materials

4.1 Rate type formulation

A rate type formulation of the constitutive equations will be used and an additive separation of
the viscous and elastic part is assumed:
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a) Creep of mature concrete b) Creep of solidifying concrete
. E(t,) DE(t) : E(t)) <E(t)
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strain strain due to solidification strain

Figure 3: Viscoelastic behaviour: a) without, b) with the cagrsition of aging.
e+ .e .
€ L € + s¢ (16)

To find a mathematical model that is consistent with the definition of the creep function, one
has to consider the full time derivative:

g? = aﬁ [6Do] = %Do ¥ %%o ¥ g%g (17)

l €2

For nonaging materials the second ﬁrt vanishes. For aging materials especially this second
part must be investigated more closely. Therefore in the following chapter all three parts of the
viscous strain rate, that where already identified by Huckfeldt [7] are explained.

4.2 \iscous strains for solidification and deterioration

We now look at the three parts of the viscous strain rate as introduced above. The first part is
the standard or primary term of creep. It's the sole part if stiffness and stresses are constant,
and it’s integration over time results in the creep function itself. So this is the only part, that can
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be verified by standard creep tests. For pure solidification and deterioration thélq)term is for
a constant stresg(t,):

s3() = ¢(t t)D(t )0, (18)

If the stresses vary over time, one has to integrate over all loadingrtimes

t
810 = [6(, DDOS(D (19)
0

The second pale'tg is creep, that is caused by the rate of the stiffness corresponding to the sec-

ond part of the elastic strain rate. For solidification this part must not be considered (cf. eg. 8).
e 0 _ 9 _
Solidification: aD(to) =0 o0 &=0 (20)
For deterioration the inelastic strain ratiefs , which are caused by damagefat time , are fol-

lowed by new creep strai

t t
Deterioration: sg(t) = Iq)(t, T)égﬁ)df = oo(tO)Iq)(t, DD of (21)

L L

The strain rate is obtained according to the rules for the derivation of integral equations of the
\olterra type:

t

8300 = 0,190 YD) + (1) [b(t HDMOR (22)
l:O
For continous stress changes eq. (22) must be integrated over all loading times
t | t B | 0
§3(t) = [6@a(t HDOd + [o() gd)(t, HD®dilt 23)
O
0 T

ﬂ:l[l[l[l[l_[l[l[l

a()¢(t D)

The third parts'g is the instantaneous creep of the streserate . Together with the first part of
the elastic strain rate one gets the instantaneous strain rate:

§e+gd = (1+0)Do (24)
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As normally the whole instantaneous deformation is considered by the Young’s modulus,
d(t,t,=t) usually is zero. Therefors;  as well as the first term in eq. (23) are zero in the differ-
ential form. But they must be considered when transformation to the incremental form of the
constitutive equation is carried out:

ti+1
Aej = I o(t; , 1, D(T)o(T)dt (25)

t;

4.3 Viscoelasticity for deterioration and solidification

Now one may combine the different parts to a viscoelastic constitutive law. First the case of
pure deterioration is given by eq. 26:

Deterioration E<0

50 +£%(t) = D (D) Y
+D(t)o(t) - &5
t
+ [, DDt L8
: (26)
+o()o(t, D) N
tod O
+ [o@Joe OO - &3,
0 ]
+ D)o (t, Ha(®) L8

The case of pure solidification without deteriorating effects is obtained by omitting the second
parts of the elastic and viscous strain rates. Eq. (27) doesn’t depend on the rate of stiffness,
according to the idea, that an increasing stiffness doesn't affect the strains directly. The influ-
ence of solidification on the creep process is included automatically in the creep function itself,
wich is derived from experiments with hardening concrete specimen (aging creep function).

10
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Solidification: E=0

50 + %) = D) (D) S
t
+ [, DD -8 @7)
0
+ D) o(t, t)o(t) — 8'2

The derived formulations for pure solidification and deterioration don’t allow the analysis of
problems, where both phenomena occur together. Furthermore for algorithmic reasons it is
inconvenient to distinguish between two cases. Thus we derived a unified theory by using the
same general representation of the stiffness as in chapter 2:

E(t) = BO[L-31)]E (28)

For the unified approach we now must presume, that the material shows a common creep
behaviour for increasing and decreasing stiffness, that is again defined by a creep function
according to eq. (11). From this definition we get the viscous strain caused by a constant stress

o(to):
t
=) = o(t, te3(t) + [0t Dex()el =
t

° (29)
t

= 40,1900 + [0 D DMo ()i
t

(o]

Considering the demonstrative model of including and cutting springs (table 1), it is found that
the rate type constitutive law again is obtained by applying the time derivative only to the dete-
riorating part of the stiffness change:

' oD(B.8)x _ (1)
D) - =558 = - 5500 (30)

So we finally get a unified viscoelastic constitutive law in rate type form:

11
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£ + (1) = DG L&
3(t) e
6(t)D(t) a(t) - &2
t
+ [6(, VDOt _ A
(31)
+ (6 )72 gD - &b,

t |j . 0
N7 -¢
+I°(T)§¢(t, t)l_—éﬁ)Da)Cﬁéﬁ - €2p
0 T

+0(t, HD() (1) P

4.4 Example

Agam the S|m|$le example from fig. 2 is chosen to show the different parts of the viscous strain

rate. 32a ancez are zero according to the starting value of the creep function and the rate type
formulation. If large time steps within an incremental algorith are used, these parts may reach a
noteworthy magnitude. The influence of damage on the creep strain is shown in fig. 4 by com-

parision with the strain of the pure solidification problem.

5 Computational Realization

5.1 Incremental Form

According to the rate type formulation the incremental change of the inverse material stiffness
D is obtained by the consideration of deteriorating effects only:

1 1 F AS
AD = D(t;, ) -D(t) ~ & O =

[l—6i+l_1—6iDBi+lE_1_5(ti)D(ti+1) (32)

The components of the matr which gives the multidimensional form of the material stiff-
ness, are defined by

12
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Figure 4. Example for aging viscosity (combined solidification and deterioration).

_1

wherev is the Poisson’s ration, which is assumed to be independent of tim; @rttie Kro-
necker delta.

Thereof the generalized incremental constitutive law for the elastic strain rates is:

b1 G
Ae® = I D(t; , {)o(T)dt — ID(ti)d(t)dt
0 0
t; t

i+1

(D(t; 4 1) — D(ti))J'd(T)dT +D(t; , 1) J' o(T)dt
0 t;

= & _Ag(ti)D(ti + DEPE) + Dt 4 )00 = D(t, 1)E1_A—§(ti)o(ti) tAoH  (34)

OO OO oOoOo ™
e e
Asz Asl

13
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For the implementation in an FE algorithm the inverse relation is required:

Ao = Dt ) e -5 w D(t; , )o(t)g = Dltj, ) A6~ 7 _Ag(t,)oai) (35)
OO0 Coobo
E(ti + 1) - AI:)int

The increase of the load vect&P, . represents the stresses, that are set free due to the
increase of deterioration within one time step.

To get the incremental viscous strains, eq. 29 is transformed and an abbreE}/Qat'r()n IS
introduced:
t D t D
At
() = jo(r)m(t D@ + [o(t. D O( D) [dt (36)
0 DEIEIEIEIEIEITQEIEIEIEIEIEIEIEI
D(t, 1)

The increment of the viscous strain is then:

tii L

| D(t, , ;, )G (T)dt — If)(ti, )6 (1) dr (37)
0 0

As¢

t; tyq

I[f)(ti+1,t)—f)(ti,t)]d(t)dt+ [ D(t, , 1, T)G(T)r
0 t.

5.2 Integration of the stress history

The presented constitutive relations require the evaluation of integrals over the whole stress
and stiffness history. This leads to remarkable computing times for larger systems. Not long
ago, this kind of calculation simply wasn't possible and a work around was needed for similar
kinds of constitutive equations. An elegant way was introducdsialgnt [2] that solves the
problem by the evaluation of a Dirichlet series. Another solution isatieeof creep method

that demands special creep functions (cf. chapter 3.2). But if the computing power continues to
double according to Moores law every 18 month, the real evaluation of the history integrals
will soon be possible for large systems with reasonable computational effort.

To circumvent the storage problem, there is a work around for pure solidification problems: It
is possible not to save the history of the stresses, but the strains for every time step in the
future. In the actual time step i, the viscous strain increment for all future time steps j>i are

14
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calculated and added to the values already inherited from former time steps. This is advanta-
geous, because the storage effort is a maximum at the beginning of the calculation. During the
calculation the storage space of already evaluated time steps may be set free and used for the
increasing storage requirements for the results. A drawback of this method is, that the sequence
of time steps can’'t be adapted during the calculation and that a continuation of a finished calcu-
lation isn’t possible.

6 Conclusion

There is a significant difference in the behaviour of solidifying i.e. time-hardening materials
like concrete, and melting materials, that can be seen in this context as a representation of dam-
age due to non—mechanical parameters (time, temperature). In a first approach both phenom-
ena can be described by a time—dependent variation of their elastic stiffness, assuming a con-
stant Poisson’s ratio (eq. 1). Presently two separate theories are used to model the physical
behaviour for increasing and decreadidn this paper the shared and the different theoretical
parts in the context of a unified viscoelastic constitutive model are discussed, where the elastic
and the viscous parts of the strain rates are decomposed.
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